If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=3694
We move all terms to the left:
n^2+n-(3694)=0
a = 1; b = 1; c = -3694;
Δ = b2-4ac
Δ = 12-4·1·(-3694)
Δ = 14777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{14777}}{2*1}=\frac{-1-\sqrt{14777}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{14777}}{2*1}=\frac{-1+\sqrt{14777}}{2} $
| x*(x+1)*(x+2)-35904=0 | | (5-7x)/2=2x | | (16x-8)+(8x-24)=(12x-8)-(x-5) | | 48h/4+48h/3=14 | | 6a+1=6.2 | | 6a+1=5.2 | | {a-6}/{6}=10 | | a-6/6=10 | | 2a+4=3.2 | | (5x-3-2)*3=(x+7)*5 | | 43x/50+(26*(x-15))/25=544 | | 7(4c+1)-2(2c-3)=23 | | 7(4c+1)−2(2c−3)=−23 | | -1/2(16-2y=11 | | x−(−4x+2)=13 | | 7(a−3)=8a+2 | | 4−6p=2p−3 | | 3/5n+12=2n-9 | | 11r+120=−r | | 4.6+y=2.6 | | 100+(x-1)+(2x-3)+(3x+4)=101+(5x+5) | | M-3/4x=24 | | -42=-7c | | -41-5x+1x=9 | | 19r^2+19r+10=0 | | -.13=(x-110)5 | | -.13=(x-110)/(5) | | 0.4m-5/1.5m+1=-1/3 | | -.51=x-102/5 | | -.51=x-105/5 | | x/6+2=x/4 | | 2(3x-5)=2(2x+2) |